新闻资讯

电流互感器的正确的穿线方式,以及四种电工接线方法,很简单有没有!
2019-09-05 14:03:11来源:100唯尔

电流互感器正确的穿线方式,变比与匝数换算详解

电流互感器是依据电磁感应原理,将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。

它的一次侧绕组匝数很少,串在需要测量的电流的线路中;二次侧绕组匝数比较多,串接在测量仪表和保护回路中。电流互感器二次侧不可开路。

正确穿绕的方法与匝数计算

我们首先应根据负荷的大小确定互感器的倍率,然后将一次线按要求从互感器的中心穿绕,注意不能以绕在外圈的匝数为绕线匝数,应以穿入电流互感器内中的匝数为准。如下图:

如最大变流比为150/5的电流互感器,其一次最高额定电流为150A,如需作为50/5的互感器来用,导线应穿绕150/50=3匝,即内圈穿绕3匝,此时外圈为仅有2匝。即看穿了几匝,只要数清楚内圈有几圈就可以了。

变比与匝数的换算

有的电流互感器在使用中铭牌丢失了,当用户负荷变更须变换电流互感器变比时,首先应对互感器进行校验,确定互感器的最高一次额定电流,然后根据需要进行变比与匝数的换算。

如一个最高一次额定电流为150A的电流互感器,要作50/5的互感器使用,换算公式为:

一次穿芯匝数=现有电流互感器的最高一次额定电流 / 需变换互感器的最高一次额定电流

一次穿芯匝数=150/50=3匝

即变换为50/5的电流互感器,一次穿芯匝数为3匝。同理,如原电流互感器的变比为50/5,穿芯匝数为3匝,要将其变为75/5的互感器使用时,我们先计算出单匝状态下最高一次额定电流:最高一次额定电流=原使用中的一次电流×原穿芯匝数=50×3=150A。

变换为75/5后的穿芯匝数为150/75=2匝。即原穿芯匝数为3匝的50/5的电流互感器变换为75/5的电流互感器用时,穿芯匝数应变为2匝。

再如原穿芯匝数4匝的50/5的电流互感器,需变为75/5的电流互感器使用,我们先求出最高一次额定电流为50×4=200A,变换使用后的穿芯匝数应为200/75≈2.66匝,在实际穿芯时绕线匝数只能为整数,要么穿2匝,要么穿3匝。无论我们是是穿2匝,还是穿3匝,都会带来测量上的误差。

所以当我们不知道电流互感器的最高一次额定电流时,是不能随意的进行变比更换的,否则是很有可能造成计量上的误差的。

电流互感器,电压互感器怎么接线?看完8张图足够了!互感器在电力系统中使用广泛,作用是将一次系统的高电压或大电流转换成低电压和小电流,电压互感器二次侧电压为100V,电流互感器二次电流为5A或1A,其中5A使用的较多。

1.是单台电流互感器的接线形式

只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。

2.三相完全星形接线和三角形接线形式

三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。

3.两相不完全星形接线形式

在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。这种接线方式用于中性点不接地系统或经消弧线圈接地系统作相间短路保护。

4. 两相差电流接线形式

也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。但故障形式不同时,其灵敏度不同。这种接线方式常用于 10kV 及以下的配电网作相间短路保护。由于此种保护灵敏度低,现代已经很少用了。

来源/网络